The used.cars
data frame has 48 rows and 2 columns. The data set includes a neighbours list for the 48 states excluding DC from poly2nb().
used.cars
This data frame contains the following columns:
tax.charges: taxes and delivery charges for 1955-9 new cars
price.1960: 1960 used car prices by state
Hanna, F. A. 1966 Effects of regional differences in taxes and transport charges on automobile consumption, in Ostry, S., Rhymes, J. K. (eds) Papers on regional statistical studies, Toronto: Toronto University Press, pp. 199-223.
Hepple, L. W. 1976 A maximum likelihood model for econometric estimation with spatial series, in Masser, I (ed) Theory and practice in regional science, London: Pion, pp. 90-104.
if (requireNamespace("spdep", quietly = TRUE)) {
library(spdep)
data(used.cars)
moran.test(used.cars$price.1960, nb2listw(usa48.nb))
moran.plot(used.cars$price.1960, nb2listw(usa48.nb),
labels=rownames(used.cars))
uc.lm <- lm(price.1960 ~ tax.charges, data=used.cars)
summary(uc.lm)
lm.morantest(uc.lm, nb2listw(usa48.nb))
lm.morantest.sad(uc.lm, nb2listw(usa48.nb))
lm.LMtests(uc.lm, nb2listw(usa48.nb))
# \donttest{
if (requireNamespace("spatialreg", quietly = TRUE)) {
library(spatialreg)
uc.err <- errorsarlm(price.1960 ~ tax.charges, data=used.cars,
nb2listw(usa48.nb), tol.solve=1.0e-13,
control=list(tol.opt=.Machine$double.eps^0.3))
summary(uc.err)
uc.lag <- lagsarlm(price.1960 ~ tax.charges, data=used.cars,
nb2listw(usa48.nb), tol.solve=1.0e-13,
control=list(tol.opt=.Machine$double.eps^0.3))
summary(uc.lag)
uc.lag1 <- lagsarlm(price.1960 ~ 1, data=used.cars,
nb2listw(usa48.nb), tol.solve=1.0e-13,
control=list(tol.opt=.Machine$double.eps^0.3))
summary(uc.lag1)
uc.err1 <- errorsarlm(price.1960 ~ 1, data=used.cars,
nb2listw(usa48.nb), tol.solve=1.0e-13,
control=list(tol.opt=.Machine$double.eps^0.3),
Durbin=FALSE)
summary(uc.err1)
}
# }
}
#> Please update scripts to use lm.RStests in place of lm.LMtests
#> Loading required package: Matrix
#>
#> Attaching package: ‘spatialreg’
#> The following objects are masked from ‘package:spdep’:
#>
#> get.ClusterOption, get.VerboseOption, get.ZeroPolicyOption,
#> get.coresOption, get.mcOption, set.ClusterOption,
#> set.VerboseOption, set.ZeroPolicyOption, set.coresOption,
#> set.mcOption
#>
#> Call:
#> errorsarlm(formula = price.1960 ~ 1, data = used.cars, listw = nb2listw(usa48.nb),
#> Durbin = FALSE, tol.solve = 1e-13, control = list(tol.opt = .Machine$double.eps^0.3))
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -76.1518 -18.2214 5.2489 21.6309 63.4983
#>
#> Type: error
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 1542.607 27.321 56.462 < 2.2e-16
#>
#> Lambda: 0.82919, LR test value: 54.202, p-value: 1.8086e-13
#> Asymptotic standard error: 0.070993
#> z-value: 11.68, p-value: < 2.22e-16
#> Wald statistic: 136.42, p-value: < 2.22e-16
#>
#> Log likelihood: -240.977 for error model
#> ML residual variance (sigma squared): 1045.4, (sigma: 32.333)
#> Number of observations: 48
#> Number of parameters estimated: 3
#> AIC: 487.95, (AIC for lm: 540.16)
#>