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Abstract

Soil surveys and mapping with traditional methods are time-consuming and expensive especially in mountainous

areas  while  demand  for  detailed  soil  information  is  steadily  increasing.  This  study  tested  two  spatial  hybrid

approaches  to  predict  and  map basic  soil  properties  using  high  resolution  digital  elevation  model  (DEM) and

multispectral satellite imagery in a study area located in the Caucasus Mountains, Azerbaijan. Terrain attributes and

spectral  indices  extracted  from DEM with 12.5m spatial  resolution and Pléiades-1 data were  used as  auxiliary

variables. A total of 115 soil samples were collected from the surface layer of 423 ha area and tested for soil organic

carbon, soil reaction (pH in H2O and KCl solutions), calcium carbonate (CaCO3), sand, silt, clay and hygroscopic

water  content.  The  predictive  capability  of  Universal  Kriging  (UK)  and  Random  Forest  Kriging  (RFK)  was

evaluated using spatial cross-validation technique. To model and quantify the associated uncertainty of these models

a probabilistic framework, kriging variance approach was applied. The uncertainty models were validated using

independent and randomly selected control points (20% of the reference samples). For this, the actual fraction of

true values falling within symmetric prediction intervals was calculated and visualized known as accuracy plot.

Although the performances of the tested models were similar,  RFK was superior in view of both accuracy and

computed biases. The models were capable of delineating spatial pattern, mostly elevation dependent as well as the

local patterns attributed by e.g., variations in vegetation, land use and soil erosion. UK model produced a few local

erratic spatial patterns (e.g., in the case of pH) corresponding to the artifacts such as roads and houses in the image

that  should be considered  in future  applications.  When comparing the uncertainties,  both the models produced

considerable underestimations and overestimations depending on soil property.  RFK provided better uncertainty

estimation for the most of soil properties than UK, the latter technique was more appropriate for the clay and pH KCl

prediction.  This  case  study  confirmed  the  importance  of  assumptions  made  in  uncertainty  modelling  and

quantification. Those soil properties were therefore reliably predicted that their residuals were compatible with the

normality  assumption  and  showed  apparent  spatial  correlation,  e.g.,  both  the  models  severely  overestimated

uncertainty of CaCO3 due to lack of normality assumption and low spatial correlation. This study showed that high

resolution remote sensing data are promising, and the procedure presented in this study can be reliably used to map

the studied soil properties and extended to partially larger adjacent areas characterized by similar environmental

conditions in the Caucasus Mountains.  However,  with respect to future digital soil mapping, we assume that it is
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important to consider sampling design, testing other modelling approaches their uncertainties and multi-scale digital

terrain analysis as well.

Key words: soil properties, terrain attributes, spectral indices, hybrid spatial models, uncertainty modeling, 

Kastanozems, the Caucasus Mountains

1. Introduction

The soil, particularly in the mountainous regions is an important controlling factor of many environmental

processes such as forest and crop growth, hydro-geochemical cycle, nutrient leaching and greenhouse gas emission

(Lal,  2004;  Wilding,  1985).  The  quantitative  estimation  of  spatial  variability  of  soil  is  important  in  a  better

understanding of complex relationships between soil properties and environmental factors. This complexity includes

intrinsic and extrinsic factors  (Heuvelink and Webster, 2001) varying greatly depending on topography, climate,

vegetation and anthropogenic activity all of which significantly affect spatial variability of soil properties (Shi et al.,

2009). 

Availability of numerous digital covariates as well new types of space-born remote sensors and advances in

computers and information technologies have created a quantitative approach in soil mapping, termed digital soil

mapping (DSM) (McBratney et al., 2003). By making use of large diversity of auxiliary data sources and modeling

approaches from simple linear models to complex machine learning techniques, DSM has shifted from a research

phase  into  operational  use  (Minasny  and  McBratney,  2016) and  become  comparable,  more  accurate  and  an

indispensable approach compared to conventional mapping (Bazaglia Filho et al., 2013; Collard et al., 2014). 

Overall, DSM especially in mountainous areas, is a complex task due to heterogeneity, the nature of soil-

forming factors, and the close relationships that occurred between them. This is especially complex in the Caucasus

Mountains where the local communities host traditional agriculture, and typical land ownership is characterized by

small patches (Salukvadze and Medvedkov, 2011) when high resolution soil mapping is considered. On the other

hand,  soil  surveys  in  mountainous  areas  can  be  costly,  and  DSM  usually  faces  a  general  lack  of  available

observations that often limits the quantity and quality of the samples on which the mapping procedure is based. In

this  sense,  high resolution DSM  in mountainous areas  can  contribute  to  the  proper  evaluation and sustainable

management of soil resources as well different environmental modelling applications. 
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In mountainous areas, the topography plays a crucial role and influences significantly most of the other

soil-forming factors such as e.g., climate and vegetation cover (Pendleton and Jenny, 1945). The character of such

close  relations  between  soil  and  environmental  factors  encourages  considerably  linear  regression  technique

(McKenzie and Ryan, 1999), whereas non-linear relationships between soil properties and environmental factors

usually  occur  and  reduce  the  applicability  of  the  linear  regression  to  limited  areas  (Lian  et  al.,  2009).  These

problems can be partially solved by non-parametric machine learning techniques and hybrid spatial models as well

auxiliary data used to compensate for the data shortage.

A variety  of  approaches,  such  as  traditional  statistical  (Lian  et  al.,  2009),  geostatistical  and  machine

learning techniques have been extensively applied in DSM (Keskin and Grunwald, 2018; Veronesi and Schillaci,

2019;  Wiesmeier  et  al.,  2011).  The  geostatistical  approach  is  one  of  the  best  spatial  interpolation  techniques

(Webster and Oliver, 2008) and its reliable performance owing to e.g., sampling design, the nature of the study area

was presented in many studies in particular with main focus on soil organic carbon mapping (Cambule et al., 2014;

Pouladi et al., 2019; Veronesi and Schillaci, 2019). However, it was stressed that kriging becomes uncertain with a

small number of samples and unable to model local variations (stationarity assumption) of soil properties caused by

differences in e.g., topography, climate and vegetation (Elbasiouny et al., 2014; Eldeiry and Garcia, 2010).

The  application  of  machine  learning  techniques  and  hybrid  spatial  models  is  steadily  increasing  in

environmental and soil science (Keskin and Grunwald, 2018; Li et al., 2011; Veronesi and Schillaci, 2019). Random

Forest (RF) (Breiman, 2001) is one of the most applied machine learning technique quickly gained popularity due to

its  ability  to  model  non-linear  relationships  on  high  dimensional  data  and  the  possibility  to  provide  variable

importance  (Liaw and Wiener,  2002; Myles et al.,  2004). Therefore,  its superiority over other geostatistical  and

machine learning techniques was well presented in several studies (Subburayalu and Slater, 2013; Wiesmeier et al.,

2011) as well as in trend estimation when hybrid approach was considered  (Hengl et al., 2015).  Hybrid spatial

models employ simultaneously both kriging interpolation and auxiliary variables  in order  to increase prediction

accuracy  (Odeh et al., 1995; Phachomphon et al., 2010). Recent studies have emphasized outperformances of the

hybrid models over other approaches in combination with different scales, usage of varying resolution auxiliary and

response variables (Chen et al., 2019; Tziachris et al., 2019).

As regards auxiliary data, digital elevation models (DEM) and multispectral satellite images (MI) have

been widely used in DSM (McBratney et al., 2003). Majority of DSM discussions preferably used freely available
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DEMs and MIs. Together with the modeling approach and auxiliary data, the scale is an essential consideration in

DSM. As the soil-forming and environmental factors vary and respond at different scales, selecting DEM and MI

resolution is a noteworthy phase. The terrain features can influence the prediction performance of soil properties, the

scale at which pedogenic processes occur in the landscape, and whether the DEMs can represent the features in the

terrain (McBratney et al., 2003). More recently, there has been growing interest in evaluating how the characteristics

of auxiliary variables contribute to the success of DSM. It is commonly accepted that more spatial information the

auxiliary  variables  gain  the  more  accurately  they  describe  environmental  conditions  (Hengl  et  al.,  2013).

Accordingly, several studies focusing on the effect of multiscale terrain analysis (Behrens et al., 2010; Cavazzi et

al., 2013), spatial resolution of DEM (Smith et al., 2006) and MI  (Xu et al., 2018) confirmed that more detailed

covariates lead to more accurate predictions.  The overall accuracy of finer resolution DEM is better than that of

medium resolution  such  as  SRTM and  ASTER DEM,  and the  rougher  and  steeper  topography is  satisfyingly

depicted with high resolution DEM (Kramm and Ho, 2019). However, Kim and Zheng, (2011) found inverse results

that fine-scale topographic information is not always optimal for understanding soil spatial variability. Likewise, the

effect of fine and high-resolution MIs delivered by commercial satellites such as SPOT 6, Rapid Eye, Pléiades-1,

World View-2/3 have commonly less studied.  Sumfleth and Duttmann, (2008) and  Xu et al.,  (2018) confirmed

advantages of using higher spatial resolution images for predicting different soil properties in terms of accuracy and

error assessment, while others  (Samuel-Rosa et al., 2015; Xu et al., 2018) pointed out that the auxiliary variables

extracted from higher spatial resolution images may not always produce the most accurate soil prediction.

In  this  context,  discussions  for  addressing  high  resolution  auxiliary  data  are  limitedly  available  in

mountainous regions. Especially, no study was concerned with DSM using high resolution data in the Caucasus

Mountains. Therefore, this study specifically focused on evaluating the potential of high-resolution DEM and MI

(Pléiades-1) in predicting soil properties in a local test area in the Caucasus Mountains. The DEM used in this study

was a product of the Advanced Land Observing Satellite (ALOS) that has been made publicly available recent years

(Alaska  Satellite  Facility).  To  produce  a  model  possibly  higher  accuracy,  high-resolution  auxiliary  data  was

combined with modelling approaches. Therefore, we tested two spatial hybrid models, Universal Kriging (UK) and

Random Forest Kriging (RFK) as well as their associated uncertainty to evaluate and map basic soil properties, soil

organic  carbon (SOC),  soil  reaction  (pH),  particle  sizes  (sand,  silt,  and clay),  calcium carbonate  (CaCO 3)  and

hygroscopic water content (WC).
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2. Material and methods

2.1. Description of the study area

The study was performed in the Caucasus Mountains, in the administrative area of the Tovuz district, west

part of Azerbaijan (Fig. 1). The test area is in the foothill belt, between 40.84°N and 40.87°N latitudes, 45.62°E and

45.64°E longitudes. The foothill belt is a transition zone between semi-arid (semi-desert  and dry steppe climate

zone) and a moderate climate. Despite being a transition zone, its landscapes are characterized by considerable

variability. The elevation ranges from 700 to 1100 m above sea level along the 423 hectares area of the test site. The

morphology of the study area is  characterized by gentle and dominantly west  and east-facing slopes.  Pastures,

hayfields  and  arable  lands  are  typical  land  uses,  while  natural  shrubbery  is  locally  typical  due  to  extensive

agricultural use. In combination with herbaceous vegetation, the shrub association is dominant in north and north-

west face slopes at higher elevations. The lower timberline of deciduous forest passes through the highest south part

of the study area.

The climate is characterized by a moderate with mild-dry winters. An average air temperature and annual

precipitation is 10.2°C and 570 mm, respectively. Rainfall mostly occurs maximum in spring with frequent high-

intensity rainstorms and minimum in winter with short-term (a few days) persistence of snow cover. As typical to

Mediterranean climate, winters are mild and dry, and summers are mild and warm. The soil moisture regime is

xeric, and the soil moisture control section is moist for ½ to ¾ of time, moist for more than 45 consecutive days in

winter, or dry in summer.

The geological  setting  of  the  study area  comprises  of  volcanic,  volcanic-sedimentary  and sedimentary

rocks. The typical rocks are quartz-diorites, tonalites of the upper Jurassic lower Cretaceous system (Bayramov et.

al., 2008). However,

Fig. 1. Location of the study area (DEM source: Alaska Satellite Facility, https://asf.alaska.edu/sar-data-sets/alos-

palsar/).

sedimentary rocks, especially diluvial sediments prevail as parent material at lower elevations or foot slopes. 

Before this study, no extensive soil survey had been performed in this area. The only existing largest scaled

soil  map (1:100 000)  of  the area  is  the  official  state  soil  map of  Azerbaijan  (Salayev  et.  al.,  1990),  which is

practically  unsuitable  for  characterizing  soils  in  areas  smaller  than  1000  hectares.  In  the  study  area,  the
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accommodating soil group is Kastanozems (Babayev et. al., 2017). The soils in the south and south-east face slopes,

especially at higher elevations are shallow in depth and skeletal with sandy-loam and loam in texture. As the foothill

belt is susceptible to agricultural use and soil erosion, outcrops of bedrocks and severe erosion is commonly typical. 

2.2. Soil sampling and laboratory analyses

A total of 115 soil samples were collected from the surface layer (0-15 cm) resulting in 1 sample per 3.7

hectare.  The sample  locations were  placed  irregularly  taking  soil-landscape  features,  such  as  topography,  land

use/cover,  geological  substrate  and  the  erosive  state  into  account.  Geographical  coordinates  of  the  sampling

locations were determined using a Garmin GPS Map 62s. The samples were air-dried, milled and sieved through a 2

mm sieve then analyzed in a laboratory. SOC content was determined using the Walkley-Black method (Sparks et

al., 1996), soil reaction in 1:1 soil to H2O (pHH2O) and KCl (pHKCl) solutions (ISO 10390, 1997) using pH-meter.

Particle  sizes  (sand,  silt,  and  clay)  were  determined  by  the  hydrometer  method  (Klute,  1988) and  classified

according to the textural classes of International Society of Soil Science. CaCO 3 content was determined using the

pressure calcimeter method and, WC of the samples was determined by drying at a temperature of 105°C for 12

hours.

2.3. Statistical analysis of the tested soil properties

To summarize the characteristics of the response variables (soil properties), the results of chemical tests

were described in terms of minimum (Min), maximum (Max), mean, median, standard deviation (SD), coefficient of

variation (CV), skewness and kurtosis. Initially, the results of analyses of soil properties were checked for normality

test. As the soil properties were non-normally distributed, Spearman’s Rho correlation coefficients between soil

properties were calculated to find out the relationships between them in view of modelling results.  The statistics

resolve  whether  the  response  variables  are  complex  to  model  using  linear  or  non-parametric  techniques.  The

correlation coefficients were interpreted based on  Wuensch and Evans,  (1996) classification (r = 0.00-0.19-very

weak;  0.20-0.39-weak;  0.40-0.59-moderate;  0.60-0.79-strong  and  0.80-1.00-very  strong).  The  CV  values  were

interpreted according to  Wilding, (1985),  the CV values of >15%, 15 < CV < 35%, and > 35% represent low,

moderate, and high variability, respectively. The descriptive statistics were calculated in the R software environment

(R Development Core Team, 2019).

2.4. Remote sensing data

2.4.1. Digital elevation model and extracting terrain attributes
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The DEM used  in  this  study  was  a  product  collected  with the  Phased  Array  Type L-Band Synthetic

Aperture  Radar  instrument  of  the  Advanced  Land  Observing  Satellite  (ALOS-PALSAR, Japan  Aerospace

Exploration  Agency,  2012).  The  ALOS-PALSAR data  was  processed  within  a  project  of  the  Alaska  Satellite

Facility (ASF,  Alaska Satellite Facility, 2019) that produced PALSAR data at 12.5 and 30 m resolutions, both of

which are freely accessible to a broader community of users. The very-high-resolution radiometric- and terrain-

corrected DEM with a spatial resolution of 12.5 m was downloaded from the ASF’s archive  (Laurencelle et al.,

2015).  The  terrain  attributes  possibly  representing  environmental  factors  in  the  mountainous  condition  were

extracted from the DEM (Table 1) using R packages (Brenning, 2008; Conrad et al., 2015; Hijmans, 2016; Leutner

and Horning, 2017) and GRASS GIS software (Neteler and Mitasova, 2008).

2.4.2. Multispectral satellite data and extracting spectral indices

In  this  study,  high-resolution  atmospheric-  and  radiometric-corrected  MI  from  the  Pléiades  satellite

constellation was used. The Pléiades constellation delivers panchromatic product with 0.5 m resolution and four-

band multispectral product with 2 m pixel resolution. The image acquisition date (20 September 2015) was selected

to be as close to the soil sampling campaign (4 September 2015) as possible. This period was selected to coincide

with the higher sun angle and peak of the dry season (end of summer). Because the soil is bare and dry after cereals

and potato harvesting in arable lands as well pastures and hayfields are represented with scarce vegetation cover that

is convenient for satellite sensors to collect information from the soil surface. The reflectance values of the four

bands, and a set of spectral indices (Table 1) were calculated in R (Hijmans, 2016; Leutner and Horning, 2017; R

Development Core Team, 2019) and GRASS GIS software (Neteler and Mitasova, 2008). Soil Adjusted Vegetation

Index (SAVI) was computed with considering a value of constant variable,  L equal to 0.5. In order to integrate

auxiliary variables and facilitate the mapping of target soil properties, the spectral indices (2 m) were resampled to

the original resolution of the terrain attributes (12.5 m).

Table 1 Auxiliary variables extracted from the DEM and MS.

2.5. Hybrid spatial prediction and mapping

Spatial prediction is the process of estimating the values of a target quantity at unvisited locations and its

application to a whole study area is referred to as spatial mapping. The spatial prediction and mapping with hybrid

techniques combines kriging and use of auxiliary information. Thus, hybrid spatial techniques combine regression
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between  the  target  soil  variable  and  secondary  parameters,  with geostatistical  methods on the  residuals  of  the

regression  that  optimizes  the  prediction  of  target  soil  properties  in  unsampled  locations  (Hengl  et  al.,  2007;

McBratney et al., 2000). The prediction by hybrid spatial model is the sum of the prediction of regression and the

prediction of the kriged residuals of the regression that  can be described and modelled in terms of a deterministic

component and a stochastic component:

Z(u) = m(u) + ε(u)     [1]

where Z is the soil property, m is the deterministic part describing structural variation, ε is the stochastic part (error)

consisting of random variation and u is the vector of the geographical coordinates (Ahmed and De Marsily, 1987).

The predictions of any given model are always different from true values termed as error which is unavoidable

(Heuvelink, 2014). The error is defined as the difference between the true and predicted value that could be spatially

correlated. In fact, error is not known spatially exhaustively, and we often do not know it because true values are

difficult to measure everywhere in the study area.

Therefore, uncertainty refers to a state of our knowledge that is uncertain about the given soil property. As the soil

map predicted based on Eq. [1] is simplified representations of complex and partially unknown patterns of soil

variations, any predictions derived from this map have an irreducible uncertainty (Heuvelink, 2014). This distinction

between the two parts of Eq. [1] is important because it allows the separate interpolation of the two components and

the application of  different  regression and machine  learning techniques  (Hengl  et  al.,  2007).  In  this regard,  an

emphasis  was  given  to  testing  performances  of  two  hybrid  spatial  models.  In  this  study,  UK and  RFK were

compared not only for their ability to predict the soil properties of interest but also for their ability to deliver an

accurate estimate of the associated uncertainty. Before modelling, the Spearman’s Rho correlation coefficients were

calculated  between  all  auxiliary  variables  to  identify  the  relationships  between  them.  Very  strong  correlation

coefficients were found between SAVI and NDVI (r = 0.99), TRI and SL (r = 0.99), B, G, R and TGSI (r > 0.95).

Therefore,  one of the highly correlated  auxiliary variables  (B, G,  R, NDVI,  and TRI) were  removed from the

predictor data. 

2.5.1. Universal Kriging (UK)

UK,  regression-kriging  and  kriging  with  external  drift  belong  to  the  group  of  the  so-called  ‘hybrid’

geostatistical  approaches (McBratney  et  al.,  2000).  These approaches  are practically  the same generic  methods

whereas differ in view of methodological steps used. UK, first introduced by Matheron (1969), combines regression
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of the target soil variable on environmental covariates with kriging of the regression residuals (Hengl et al., 2007).

According to  Wackernagel (1998), the term UK is referred to a case where the drift is modelled as a function of

geographical  coordinates  only.  Therefore,  this  approach  is  ideal  from the  perspective  that  both  the  correlated

variables  and  model  residuals  are  handled  simultaneously.  In  terms  of  Eq.  (1)  the  deterministic  component  is

modelled by a multiple linear regression whereas the stochastic part of the variation is modelled by kriging using the

regression  residuals  that  are  assumed  as  multivariate  normal.  This  model  automatically  generates  prediction

uncertainty via the kriging variance that is the sum of the estimation variance of the deterministic component and the

prediction variance of the kriged residuals  (Hengl et al.,  2007). Therefore,  it  reflects the position of unsampled

locations in both geographic and feature space. By means of UK prediction and its variance a parametric model of

uncertainty can be produced with the assumption of normality. It is a full and mathematically concise model since a

normally distributed random variable is fully determined by its mean and variance.

2.5.2. Random Forest Kriging (RFK)

RFK  is  considered  a  type  of  regression  kriging  and  regression  kriging  uses  regression  on  auxiliary

information and ordinary kriging to interpolate the residuals from the regression model  (Hengl et al., 2007). The

prediction of RFK consists of two phases in terms of Eq. [1], the deterministic component is modelled by RF in the

first phase,  and in the second phase  the stochastic part  of variation is modelled by kriging using the computed

residuals and then added to the predictions at corresponding locations. The variogram of  the stochastic component

is estimated according to  Matheron (1963).  RF is an extension of classification and regression tree models. As a

non-parametric method, RF is capable of modeling non-linear relationship on high dimensional data. In more detail,

RF consists of a large number of individual tree models trained from bootstrap samples of the data (Breiman, 2001).

The results of all individual trees are aggregated to make a single prediction. This method can also rank the predictor

variable's relative importance based on the regression prediction error of out-of-bag (OOB) predictions. RF perturbs

each variable and calculates the importance of the resulting change in the OOB error. Two basic parameters in the

RF method are the number of trees (in our case ntree = 500) and the number of variables available for selection in

each split (mtry = 4) (Houborg and McCabe, 2018). 

The general effect of auxiliary variables on RF model was determined using the actual impurity reduction

importance  metric  (Nembrini  et  al.,  2018; Sandri  and Zuccolotto,  2008).  Additionally,  partial  dependence plots

(Friedman, 2001) were created to determine the most important covariates for the predicted soil properties using the
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DALEX R package  (Biecek,  2018;  Greenwell,  2017).  Further  R packages  used for  creating models  were  gstat

(Pebesma, 2004), GSIF (Heuvelink and Malone, 2020), and ranger (Wright and Ziegler, 2017).

2.6. Model validation

The performance of each model was evaluated based on the spatial cross-validation technique proposed by

Brenning, (2012). Based on this procedure, the reference sampling points were divided into six spatial partitions

(folds)  to  validate  the  considered  models.  Fig.  1  shows the  sampling  locations  represented  in  different  spatial

partitions. Each model was created based on the five folds and evaluated on the remaining fold. This procedure was

successively  repeated  until  each  fold  was  used  as  a  testing  set  in  view  to  cope  with  possible  variations  of

performances when the soil properties are predicted at the field scale in a heterogeneous mountainous area.  The

quality  of  each  model  was  determined  using  root  mean  square  error  (RMSE),  mean  error  (ME),  and  residual

prediction deviation (RPD). The standard deviation of each metric (SDRMSE, SDME, and SDRPD) was calculated across

all repetitions and then averaged. A reasonable goal is to produce map with RMSE as low as possible and ME close

to zero. The validation procedure was performed using the mlr3spatiotemporal package by Schratz, (2019). 

The spatial  cross-validation  technique  allowed computing  residuals  for  all  the  spatial  folds  used  as  a

validation subset. Then a nested variogram model was fitted for the variogram of the residuals of each soil property.

A nugget model was fist fitted to describe spatial discontinuity at the origin and isotropic exponential model was

used for each soil property. 

2.7. Uncertainty quantification and validation

To model and quantify the uncertainty, a probabilistic framework was applied in this study. This is by far

the most accepted approach and has the important advantage that it relies on solid statistical theory and that it can

characterize  uncertainty  in  great  detail,  including  uncertainty  dependencies  in  space,  time  and  between  soil

properties (Heuvelink, 2014).

In the probabilistic framework to model and quantify the uncertainty at a prediction location, where the

unknown value z(u) is considered as a realization of a random variable Z(u). The (cumulative) distribution function

of the random variable Z(u) fully models the uncertainty because it gives the probability that the unknown is no

greater than any given threshold z, that is

F (u; z) = Prob{Z (u) ≤ z}

This equation is considered as the model of uncertainty at the prediction location u. 
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To model and quantify the uncertainty of the prediction, kriging variance approach was applied (Hengl et

al., 2007). A parametric uncertainty model of UK was produced by means of UK prediction and its variance with the

assumption  of  normality.  For  RFK,  the  kriging  variance  of  the  stochastic  part  of  the  variation  and  the  RFK

prediction described above are used to model the uncertainty as in the case of UK (Vaysse and Lagacherie, 2017).

However, this uncertainty model does not account for the uncertainty in estimating the deterministic component.

Therefore, there is a need to assume that the varying local mean is exactly equal to the RF prediction. In addition,

we must assume normality to be able to construct a parametric model of uncertainty (Szatmári and Pásztor, 2019).

In order to spatially explicitly visualize the uncertainty of a spatial prediction, map of the upper and lower

limit of the 90% prediction interval (PI) is considered (Arrouays et al., 2014; Heuvelink, 2014). This PI reports the

range of values within which the true value is expected to occur 9 times out of 10. If the uncertainty model is

parametric and normally distributed, the lower and upper limit of the 90% PI can be readily computed by subtracting

and adding 1.64 times the prediction standard deviation to the prediction. 

The uncertainty models were validated using independent and randomly selected control points (20% of the

reference samples). For this, the actual fraction of true values falling within symmetric PIs of varying width p was

calculated. The PIs can be readily derived by (1-p)/2 and (1+p)/2 quantiles of the distribution function (Coburn et

al., 2020). For a set of control data, the fraction is computed by

ξ ( p)=
1
m
∑
i=1

m

ξ (ui; p ) ∀ p∈ [ 0 ,1 ]

ξ (ui; p )={1, if z (ui ) ∈[ plower , pupper ]
0 , otherwise

where is the fraction for the PI of width p, ξ (ui; p ) is the indicator function, z (ui ) is the true value, pupper is the

upper limit of PI, plower is the lower limit of PI and m is the number of control points. A graphical way to check the

performance of the uncertainty models is to plot against p that is frequently referred to as accuracy plot (Deutsch,

1999), but also known as prediction interval coverage probability (PICP) plot  (Malone et al., 2011). Ideally, the

observed fractions are equal to the expected fractions. If they are lower than the expectations, then the uncertainty

has been underestimated. If they are higher, the uncertainty has been too liberally estimated (i.e. overestimated).

3.  Results 

3.1. Descriptive statistics of soil properties
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The descriptive statistics of the soil properties and Spearman’s Rho correlation coefficients between them

are reported in Table 2 and Fig. 2, respectively. 

In respect to the variation in topography, the SOC content showed moderate variability (CV = 34.8%),

ranging from 1.24 to 6.75%. Its mean and median values were similar (3.30 and 3.08, respectively), and skewness

value (0.67) indicated that the values are relatively evenly distributed on both sides of the mean, typically but not

necessarily implying a symmetric distribution (Table 2). The sand content showed a wide range (from 9 to 78%) as

opposed to the silt and clay contents. Therefore, its SD (±17) and CV (58.6%) values were considerably higher than

the corresponding values of the silt and clay. The mean values of the sand, silt, and clay contents were 29, 50, and

20%,  respectively  that  apparently  presented  the  predominance  of  silt  fraction.  Accordingly,  the  soils  were

prevalently silty-clay, silty-clay-loam, and partially clay-loam in texture.  The CaCO3 content is largely variable

ranging from 0% to 8.72% with a mean value of 2.88%. The high variability of CaCO3 content (CV = 83.6%) is

attributed by the topography and distribution the carbonate-rich parent material in the study area. The soil reaction

(pHH2O) is dominantly neutral, with a mean value of 7.25. The values of pHH2O >7.0 account for 71% of all samples

in the soils of the test site. The pH level of soils in both H2O and KCl solution showed low variability. Similar to the

SOC, the WC ranged from 1.70 to 6.67%, with a mean value of 3.73 and moderate variability (CV = 26.5%). The

skewness  and  kurtosis  values  of  the  tested  soil  properties  imply  approximately  symmetric  and  light-tailed

distributions. 

 Table 2 Descriptive statistics of tested soil properties.

Spearman’s Rho correlation coefficients showed significant relationships between the soil properties. Both

positive and negative correlation coefficients were found between the tested soil properties except the WC that was

significantly  correlated  with  only  the  SOC (r =  0.46)  and  CaCO3 (r =  0.25)  (Fig.  2).  The SOC content  was ̶

negatively correlated with all other soil properties except sand. As expected, the sand content was very strongly and

inversely correlated with the silt (r =  0.91) and clay content ( ̶ r =  0.80). However, the silt, clay and CaCO ̶ 3 contents

as well pHH2O and pHKCl were positively correlated with each other. These relations are probably attributed to the

predominating carbonate-rich parent material from which the silt and partially clay fractions originate. Therefore,

the CaCO3 content was strongly correlated with the silt content (r = 0.63). However, the correlation between CaCO3

and clay content was weak (r = 0.37). As the CaCO3 content dramatically affect soil reaction, the former was very
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strongly correlated with pHH2O (r = 0.75) and pHKCl (r = 0.85). In addition, the relation between the silt and clay,

pHH2O and pHKCl was expected.

Fig. 2. Spearman’s Rho correlation coefficients between tested soil properties. White background cells donate insignificant

correlations, P > 0.01.

The relationship between SOC and sand, SOC and clay is attributed by the characteristic distribution of

carbonate-rich parent material at low elevations and quartz-rich bedrock at higher elevations. For this reason, both

sand and SOC contents increase with elevation, while the CaCO3 content decreases in the study area. Accordingly,

the CaCO3 content was found negatively correlated (r =  0.60) with SOC (Fig. 2). ̶

3.2. Relation between soil properties and auxiliary variables

Fig. 3 summarizes the relationships between soil properties and auxiliary variables (terrain attributes and

spectral  indices)  using  Spearman’s  Rho  correlation  coefficients.  For  the  SOC  content,  the  highest  positive

correlation was found with TGSI (r = 0.57) followed by EL (r = 0.50). Furthermore, its positive relation was also

found with SL (r = 0.37) while the highest negative correlation coefficient was found with NIR band (r =  0.52) ̶

followed by TWI (r =  0.41). Other auxiliary variables showed very weak relationships with SOC. ̶  

Fig. 3. Spearman’s Rho correlation coefficients between tested soil properties and auxiliary variables.

The relationship between the sand content and auxiliary variables was slightly weaker but very similar to

those of with the SOC, that was positive with EL (r = 0.48), SL (r = 0.41) and TGSI (r = 0.37), and negative with

TWI (r =  0.34) and NIR ( ̶ r =  0.38) (Fig. 3). Unlike the sand content, the silt and clay contents showed mostly ̶

similar and negative relationships with auxiliary variables. For the silt content, the highest correlation coefficient

was found with EL (r =  0.56) followed by SL ( ̶ r =  0.37), while its content was positively correlated with TWI ( ̶ r =

0.32) and NIR (r = 0.32). Likewise, the clay content showed negative relation with EL (r =  0.41), SL ( ̶ r =  0.33) and ̶

TGSI (r =  0.28), and positive relation with TWI ( ̶ r = 0.28) and NIR (r = 0.26).

The CaCO3 content showed the highest negative correlation coefficient with EL (r =  0.60) followed by ̶

TGSI (r =  0.30), while its considerable positive relation was found with NIR band (Fig. 3). Since the soil reaction ̶

(both pHH2O and pHKCl) is mostly dependent on the CaCO3 content (as described in the previous § 3.1), the behavior
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of the former with auxiliary variables was similar. Among the tested soil properties, the WC showed the lowest

relation with auxiliary variables. Overall, its content showed weak dependency on SL and TGSI.

3.3. Performances of prediction models

The quality parameters of the tested models are presented in Table 3. Based on the model accuracy, UK

was negligibly better than RFK for the SOC, pHH2O and pHKCl prediction. However, in terms of bias RFK was more

reliable for the mentioned soil properties with the ME values of -0.02, 0.03 and 0.04, respectively.  RFK model

produced slightly more accurate prediction for the sand, clay, CaCO3 and WC with RMSE values of 15.0, 6.5, 2.00

and 0.95, respectively.  For the silt  content, although both UK and RFK produced the same prediction accuracy

(RMSE = 10.0) as well lower ME value of UK model, RFK was more stable model based on other metrics (SD RMSE,

SDME and SDRPD). 

  Overall, the performance of both UK and RFK was very similar for the corresponding soil properties.

Among the tested soil properties, the highest RPD value was found for the SOC prediction model (Table 3). The

computed biases  of both the models were positive for the silt,  CaCO3,  pHH2O and pHKCl that  indicated the soil

properties were slightly overestimated. Contrarily, both the models underestimated clay and WC. The SOC and sand

content was slightly overestimated by UK while underestimated by RFK.

Table 3 Performances of UK and RFK models of the tested soil properties.

The histograms of the computed residuals of UK and RF are presented in Fig. 4 and Fig. 5, respectively.

The residuals showed no outlier values which is appropriate for the required normality assumption. Regardless of

the model, the residuals of SOC, sand, clay, pHH2O, pHKCl and WC apparently showed symmetric distribution while

others, such as silt and CaCO3 showed negatively and positively skewed distribution, respectively. This may appear

inappropriate for the normality assumption and affect uncertainty models. 

Fig. 6 and Fig. 7 present omnidirectional variograms of the residuals of UK and RF and their corresponding fitted

models, respectively. In addition, the parameters of the fitted models for the residuals of UK and RF are presented in

Table  4.  The  range  values  considerably  varied  with  the  predicted  soil  properties  as  well  depending  on  the

deterministic model. In general, the range values of the fitted models of all soil properties (except sand and pH H2O)

for UK were significantly lower than that of RF. Correspondingly, the nugget to sill ratio values (except the case for

the sand and CaCO3) for UK were considerably higher than the corresponding values of RF model. In fact, such
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high values are often observed in DSM (Hengl et al., 2015; Szatmári and Pásztor, 2019; Vaysse and Lagacherie,

2017).  The higher range values  of  the residuals  of  RF confirm spatial  continuity at  longer  distances  that  may

appropriately affect uncertainty modeling.

Finally, for both UK and RFK the spatial prediction map of each soil property as well as lower and upper

limit of the 90% PI was presented in Fig. 8. For all predicted soil properties, both UK and RFK was capable of

depicting  spatial  pattern,  in  particular  elevation  dependent  pattern  as  well  as  local  patterns  attributed  by  the

variations in vegetation and land use. However, in terms of lower and upper prediction limits RFK model was found

more stable in all cases.

Table 4 The semivariogram parameters of the best fitted models for the residuals of UK and RF.

 3.4. Quantification and validation of uncertainty models 

The PICP plots of the predicted soil properties were presented in Fig. 9 for UK and Fig. 10 for RFK.

Uncertainty model for UK substantially overestimated the SOC and CaCO3 whereas the uncertainty of clay content

and partially pHH2O was underestimated. However,  the models for sand, silt,  pHKCl and WC were comparatively

better.  Similarly,  the  uncertainty  of  RFK  severely  overestimated  CaCO3 and  underestimated  clay  content.

Furthermore, slight underestimations were observed

Fig. 4. Histograms of the residuals of soil properties calculated based on UK.

Fig. 5. Histograms of the residuals of soil properties calculated based on RF.

Fig. 6. Variograms and best fitted models for the UK residuals.

Fig. 7. Variograms and best fitted models for the RF residuals.

for the uncertainties of sand, silt and pHH2O whereas we assume that their effect on model quality was negligible. In

some cases, unusual patterns in the PICP plots were found e.g., for the silt and pHKCl. In the case of RFK the pHKCl

was slightly overestimated in lower confidence levels and underestimated in higher confidence levels. An inverse

case was observed for the silt content when its uncertainty was explained by UK. Another unusual pattern arisen that

the computed fractions revealed the same expectation values in different confidence levels depending on the soil

properties and model applied. 
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Overall, the uncertainty models of RFK were better than those of UK for most of the soil properties except

the cases for CaCO3, pHKCl  and partially clay, of which the computed expectations are closer to x=y line than in

RFK.  

3.5. Important variables

As described above, RFK model was more reliable especially in terms of uncertainty quantification and

validation for predicting most of the soil properties (six out of eight soil properties). Therefore, the actual impurity

reduction importance metric was used to explain the impact of each auxiliary variable on the models’ outputs. Fig.

11 shows the contribution of the auxiliary variables to RF model predictions. 

As the important variables, both the terrain attributes and spectral  indices contributed differently to the

model output. Generally, from the terrain attributes EL, SL, TWI and ASc, whereas from the spectral indices TGSI

and NIR were found to be most important variables. As regard the detailed interpretation of the important variables

for each soil property, those considerably changed with the predicted soil property. For the SOC prediction model,

the spectral indices such as TGSI and NIR contributed more than the terrain attributes that were EL, SL and TWI

(Fig. 11). Contrarily, for the sand, silt and clay prediction EL and SL were the most important predictors followed

by TGSI, TWI and NIR band with varying sequences depending on the particle size. 

A different sequence of important variables appeared for the CaCO3, pHH2O and pHKCl. Hence, EL was the

most important variable with quite high partial importance score values while other auxiliary variables showed very

low and close score values (Fig. 11).  In addition, ASc was found to be more important variable (3 rd important

variable for CaCO3 and 2nd for pH) than others while its importance for predicting the other soil properties was

rather low. Unlike all the soil properties, for the WC prediction SL and TGSI were the most important predictors

with quite close scores.

Overall, EL, SL, TGSI, NIR band, TWI and partially ASc and SAVI were the predictors contributing most

to the  prediction of  all  tested  soil  properties,  particularly  EL was  the  most  important  predictor  for  6  out  of  8

predicted soil properties. Therefore, the SOC and sand content showed a positive trend with EL while CaCO3, silt,

clay and pH showed a negative trend.

Fig. 8. Predicted map of the soil properties and their corresponding upper and lower limit of the 90% prediction

interval. The unit of the maps is [%] for the all soil properties except pHH2O and pHKCl

Fig. 9. PICP plots of the soil properties predicted with UK.
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Fig. 10. PICP plots of the soil properties predicted with RFK.

Fig. 11. Importance of covariates in RFK model (vertical axis: predictor variables and horizontal axis: partial 
importance score).

4. Discussions

4.1. Relationship between soil properties and auxiliary variables

The Spearman’s  Rho correlation  coefficients  between the tested soil  properties  and auxiliary variables

showed that considerable correlations existed with EL, SL, TWI, TGSI and NIR band (Fig. 3). Furthermore, the

actual impurity reduction importance metric of RF also showed that those auxiliary variables contributed most to the

model outputs. 

As typical to the Mediterranean climate, the precipitation increases, and air temperature decreases with EL

both of which determine soil moisture and temperature regime in the study area. Therefore, EL was found as the

most important terrain attribute for the prediction of most soil properties (Fig. 11). Among the terrain attributes, SL

is  one of  the main predictors  representing erosion, accumulation processes,  water  movement  and soil  moisture

content in the landscapes. In our study area, the sand content increases while the clay and silt content decrease with

SL gradient.  Correspondingly, SL was apparently more important variable for predicting the sand, silt  and clay

content as well as the most important variable for the WC. In association with SL, aspect (ASc and ASs) affects

insolation and evapotranspiration and consequently water balance in the soil  (Böhner and Antonić, 2009). Among

the tested soil properties,  the spatial variation of CaCO3 content and pH was significantly controlled by aspect,

particularly the soil of south, south-east and south-west faced slopes is characterized by higher CaCO3 content and

alkaline environment.  This was also confirmed by the relationships between CaCO3 and pHKCl,  pHH2O (Fig.  2).

Likewise, the importance scores of ASc for predicting these soil properties were considerably higher than the other

auxiliary variables. One of the top 5 important auxiliary variables for predicting most of the soil properties was

TWI.  This  represents  the  tendency  of  water  and  other  materials  to  accumulate  in  lower  areas,  driven  by  the

combined effects of the specific catchment area and slope (Gallant and Austin, 2015). Although TWI was originally

formulated as an index of depth to water  table,  it  has been found to be an effective predictor  of different soil

properties and soil depth (Moore et al., 1993; Sumfleth and Duttmann, 2008) in supply-limited landscapes where the

capacity to transport sediment downslope exceeds the soil production rate (Gessler et al., 1995). In these landscapes,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26



the soil depth tends to increase systematically down the slope, with thin soils in the upper slopes and thick soils in

the lower slopes,  a pattern that is well  represented by TWI. The correlation coefficients  between TWI and soil

properties (Fig. 3) indicate that SOC, sand and WC tend to be high on the upper catchment positions and low on foot

slopes whereas the CaCO3, silt and clay content was contrariwise. 

From spectral indices TGSI and NIR band considerably contributed to the prediction of the soil properties.

TGSI is associated with physical properties (mechanical composition) of topsoil, indicating coarsening of topsoil

grain size.  Xiao et  al.,  (2006) proposed  TGSI to  evaluate  actual  degree  of  desertification.  A high TGSI value

corresponds  to  the  high  content  of  fine  sand  in  the  topsoil  and  contrarily  low  content  of  clay  and  silt.

Correspondingly, in our study case the sand content was positively, silt and clay content were negatively correlated

with TGSI. Apart from the contribution of TGSI to the prediction of particle sizes, that was found to be one of the

most important predictors particularly for the SOC, WC, CaCO3 and pHH2O. As regard NIR band, the soil properties

showed both negative and positive correlation coefficients with NIR band (Fig. 3). According to Ben-Dor, (1999)

soil reflectance decreases with increasing soil organic matter content in the visible near-infrared (350-2500 nm)

wavelength  range.  In  consistency  with this,  the  highest  correlation  coefficient  between  NIR band and  the  soil

properties was found for the SOC (r =  0.52). Therefore, NIR band contributed to the prediction of SOC more than ̶

its contribution to the other soil properties. The reflectance values of NIR band in arable lands of our study area

were partially high due to bare and dry soil surface, as well as more optimal illumination of arable lands that are

mostly allocated in gentle slopes. Furthermore, the reflectance of pastures that are characterized by sparse and dry

grass (at the time of image acquisition and sampling) was also lower in NIR band in association with the fragmented

shrubbery.  The negative  relationship between  NIR band and SOC content  indicates  that  arable  lands  and  less

vegetated areas tend to have lower SOC than the pastures shrubby lands.

Summarily,  the correlative  relations between the  soil  properties  and auxiliary  variables  and the actual

impurity reduction importance metric of RF model showed that terrain attributes contribute to the model outputs

more than spectral indices. Many studies pointed out that most soil properties are correlated with terrain attributes

(Bagheri Bodaghabadi et al., 2015; Sumfleth and Duttmann, 2008; Taylor et al., 2013).  Dobos and Hengl, (2009)

summarizes several previous studies using terrain parameters to predict soil properties noting the utility of TWI, SL,

curvature and flow accumulation as commonly used covariates.

4.2. Performances of prediction and uncertainty models
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The performances of the tested models were very similar especially in terms of prediction accuracy (Table

3). The accuracy of UK was slightly higher than RFK for SOC, pHH2O and pHKCl while RFK was more accurate for

the other soil properties. Furthermore, when considering the computed biases, RFK resulted in the ME values close

to zero  for  the most of  soil  properties  except  the silt  content.  These  indicate  that  RFK can give better  spatial

prediction according to error measure and prediction accuracy and a suitable technique to estimate trend. This is also

in  agreement  with  the  studies  by  Hengl  et  al.,  (2015)  and  Szatmári  and  Pásztor,  (2019) that  stated  RF often

outperforms  the  most  commonly  applied  trend  estimation  techniques.  The  reason  for  RFK provides  the  most

accurate prediction at unsampled location is that local error variance is minimized when the residuals are modelled

by kriging  (Webster  and Oliver,  2008).  Likewise,  many study examples  reported  advantages  of  using machine

learning and hybrid spatial  models integrated  with high-resolution remote sensing data.  Tziachris  et  al.,  (2019)

assessed  predictive  capability  of  different  models  for  predicting  soil  organic  matter  and  found  that  RF  in

combination with kriging of the residuals substantially increased the accuracy of prediction. Similarly, Chen et al.,

(2019) compared geostatistical, machine learning and hybrid approaches to predict SOC over an area of 3,600 km 2.

They found that machine learning approaches overall outperformed geostatistical methods, and the performances of

two-step hybrid models were more accurate than their corresponding model. Moreover, Xu et al., (2018) evaluated

the spatial resolution effect  of different satellite images to predict  total nitrogen content in two test areas using

regression kriging. They found a similar spatial pattern of total nitrogen regardless of the spatial resolution of the

images. However, the highest prediction accuracy was obtained with the use of higher spatial resolution images

(WorldView-2, Pléiades-1, and GeoEye-1) in both study areas. WorldView-2 particularly outperformed others due

to its more spectral bands and finer spatial resolution.  The spectral indices based on new bands of WorldView-2

such as coastal, yellow, red edge, and new near infrared bands showed relatively strong correlations with soil total

nitrogen content.

As regard the validation results of the uncertainty models, both UK and RFK approach provided fairly

contrasting results showing significant underestimation and overestimation especially for the residuals of SOC (in

the case of UK), clay and CaCO3 content (Fig. 9 and Fig. 10). The uncertainty model created based on the residuals

of UK for the clay, pHKCl and CaCO3 was better than that of RF which gave better estimation for the rest of soil

properties.  Aside  from underestimation  and  overestimation,  the  validation  results  of  residuals  showed  slightly

changeable pattern with confidence levels. Not only underestimated and overestimated residuals, but also irregular
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patterns noted arise from different factors including residuals in trend estimation. We assume that the number of

samples and the sampling design (randomly collected in our case) can be importantly included to the main factors

affecting the uncertainty models of the soil properties. In particularly, when the uncertainty model was validated

with the 20% of the sampling points, the kriging of the residuals with 80% of sampling points most probably led to

the  underestimations  or  overestimations  in  view  of  lower  number  of  samples  representing  heterogeneous

mountainous area.  This  assumption maybe also supported by the semivariogram parameters  that  confirm short

distance variations (Table 4, Fig. 6 and Fig. 7). It is especially important to emphasize that spatial continuity of

CaCO3 content in the surface layer is characterized with short distance variations (in some places hotspot pattern

distributions) as well its absence at elevations approximately higher than 850 m above sea level. The short distance

variations are also typical to the spatial distribution of clay content which arisen from e.g., slope, aspect and erosion

rate.  Therefore,  the  sampling  density  used  in  this  may  not  properly  capture  the  spatial  pattern  of  those  soil

properties. 

The uncertainty  of  the  predicted  soil  properties  of  which  the residuals  showed  compatibility  with the

normality assumption (Fig. 4 and Fig. 5) to a certain degree were reliably estimated by both the models (Fig. 9 and

Fig. 10). On the other hand, the uncertainty of those soil properties was better modelled when the residuals showed

apparent spatial correlation (Table 4, Fig. 6 and Fig. 7). Thus, the validation results of uncertainty models were more

reliable when the residuals meet simultaneously normality assumption and show apparent spatial correlation. 

On the other hand, as the kriging variance represents a general measure of local accuracy which is data-

value independent, some studies do not recommend to apply this approach (Goovaerts, 2001; Szatmári and Pásztor,

2019). Because, the kriging variance reflects the position of unsampled locations in geographical space without any

reflection about their position in feature space (Szatmári and Pásztor, 2019). Therefore, with respect to future digital

soil mapping studies in this region, we assume that it is important to consider i) sampling design depending on the

mapping scale, ii) testing other modelling approaches to predict soil properties and quantify their uncertainties, and

iii) multi-scale digital terrain analysis as it can help increase prediction accuracy compared to standard digital terrain

analysis (Smith et al. 2006, Behrens et al. 2010). As the validation of the uncertainty models showed significant

sensitivity  to  the  number  of  samples  used in  the validation subset,  a  special  emphasis  should be  given to  the

sampling density/design to enhance model quality and reduce resources for field sampling and chemical tests.

4. Conclusions
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In this case study, basic soil properties were predicted and mapped using high resolution DEM (ALOS-

PALSAR 12.5 m) and MI (Pléiades-1) based on two hybrid spatial models, UK and RFK. Although the accuracy of

the tested models was similar, RFK was superior in view of both accuracy and computed biases. When comparing

the  uncertainty  of  the  prediction  models,  both  the  models  produced  considerable  underestimations  and

overestimations depending on the soil property. RFK provided better uncertainty estimation for the most of soil

properties  than  UK of  which  the  uncertainty  estimation  was  more  appropriate  for  the  clay  and  pHKCl.  As  the

residuals  of  CaCO3 prediction  models  showed  very  low  spatial  correlation,  both  UK  and  RFK  severely

overestimated  its  content,  whereas  UK was  considerably  better.  While  the residuals  were  compatible  with the

normality  assumption  and  showed  apparent  spatial  correlation,  the  uncertainty  models  provided  more  reliable

prediction intervals that confirmed the importance of assumptions made in uncertainty modelling and quantification

in agreement with previous studies.  

The procedure presented in this study can be reliably used to map the studied soil properties and extended

to  fairly  larger  adjacent  areas  characterized  by  similar  environmental  condition.  Moreover,  this  study  is  a

contribution  to  decision  making  and  land  management  in  the  mountainous  area  where  high  resolution  soil

information is in demand. However, with respect to future digital soil mapping studies in this region, we assume that

it is important to consider i) sampling design depending on the mapping scale, ii) testing other modelling approaches

to predict soil properties and quantify their uncertainties, and iii) multi-scale digital terrain analysis as it can help

increase prediction accuracy compared to standard digital terrain analysis.

The  tested  hybrid  spatial  models  showed  that  high  resolution  remote  sensing  data  are  promising  for

mapping soil properties in the given sampling density in the foothill belt of the Caucasus Mountains. Particularly,

RFK was capable of delineating elevation-dependent spatial pattern as well as the local patterns of the soil properties

attributed by variations in vegetation, land use  and soil erosion. UK model produced a few local  erratic spatial

patterns (e.g., in the case of pH) corresponding to the artifacts such as roads and houses in the image that should be

considered in future applications. 
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Table 1 Auxiliary variables extracted from the DEM and MS.

Environmental variables Abbreviation References

Terrain attributes
         Elevation
         Slope gradient
        Sine of aspect
        Cosine of aspect
        Topographic wetness index
        Topographic position index
        Topographic ruggedness index
        Tangential curvature
         Profile curvature
Spectral indices
       Near infrared band reflectance
       Soil adjusted vegetation index
       Normalized difference vegetation index
       Topsoil grain size index

EL
SL
ASs
ASc
TWI
TPI
TRI
TC
PC

NIR
SAVI
NDVI
TGSI

Horn, 1981
Horn, 1981
Horn, 1981
Brenning, 2008; Conrad et al., 2015
Wilson et al., 2007
Wilson et al., 2007

Huete, 1988
Huete, 1988
Xiao et al., 2006

Table 2 Descriptive statistics of tested soil properties.

Soil constituent Min Max Mean Median SD CV (%) Skewness Kurtosis
SOC (%)
Sand (%)
Silt (%)
Clay (%)
CaCO3 (%)
pHH2O

pHKCl

1.24
9
21
1

0.00
5.76
5.04

6.75
78
77
36

8.72
7.82
6.94

3.30
29
50
20

2.88
7.25
6.28

3.08
25
54
22

2.16
7.46
6.57

1.15
17
11
7

2.41
0.46
0.52

34.8
58.6
22.0
35.0
83.6
6.3
8.3

0.67
0.85
-0.64
-0.67
0.65
-0.90
-0.91

0.01
-0.26
-0.62
-0.26
-0.83
-0.27
-0.77

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16



WC (%) 1.70 6.67 3.73 3.66 0.99 26.5 0.49 0.28

Table 3 Performances of UK and RFK models of the tested soil properties.

Soil 
constituent

Models RMSE SDRMSE ME SDME RPD SDRPD

SOC
UK

RFK
0.94
0.95

0.26
0.27

0.04
  0.02

0.23
0.35

1.20
1.20

0.22
0.24

Sand
UK

RFK
16.0
15.0

4.00
3.50

0.49
  0.47

10.10
8.10

0.98
1.05

0.13
0.12

Silt
UK

RFK
10.0
10.0

1.60
1.30

0.24
0.54

5.80
4.50

1.00
1.00

0.22
0.15

Clay
UK

RFK
7.1
6.5

1.80
2.00

  0.32
  0.04

4.20
4.00

0.93
1.02

0.15
0.19

CaCO3
UK

RFK
2.10
2.00

0.26
0.42

0.18
0.11

1.02
0.79

1.10
1.10

0.28
0.30

pHH2O
UK

RFK
0.36
0.38

0.08
0.09

0.06
0.03

0.18
0.18

1.10
1.10

0.34
0.22

pHKCl
UK

RFK
0.43
0.45

0.10
0.12

0.08
0.04

0.20
0.20

1.10
1.10

0.36
0.22

WC
UK

RFK
1.00
0.95

0.12
0.12

  0.03
  0.07

0.46
0.34

0.97
1.04

0.07
0.15

Table 4 The semivariogram parameters of the best fitted models for the residuals of UK and RF.

Prediction
models

Soil
properties

Nugget Sill Range (m) Nugget/Sill Model

Universal 
Kriging

SOC
Sand
Silt
Clay
CaCO3

pHH2O

pHKCl

WC

0.77
0.00
77.12
24.89
3.40
0.10
0.11
0.63

0.09
284.25
48.56
34.97
0.90
0.04
0.07
0.46

107
137
690
287
130
346
148
259

0.89
0.00
0.61
0.42
0.79
0.71
0.61
0.58

Exponential
Exponential
Exponential
Exponential
Exponential
Exponential
Exponential
Exponential

Random Forest

SOC
Sand
Silt
Clay
CaCO3

pHH2O

pHKCl

WC

0.10
19.59
7.33
3.28
0.83
0.01
0.01
0.11

0.06
36.78
12.79
6.32
0.04
0.02
0.03
0.09

362
662
284
383
259
308
239
448

0.62
0.35
0.36
0.34
0.95
0.33
0.25
0.55

Exponential
Exponential
Exponential
Exponential
Exponential
Exponential
Exponential
Exponential

1

2

3

4

5

6

7

8

9

10

11



Fig. 1. Location of the study area (DEM source: Alaska Satellite Facility, https://asf.alaska.edu/sar-data-sets/alos-
palsar/).
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Fig. 2. Spearman’s Rho correlation coefficients between tested soil properties. White background cells donate insignificant
correlations, P > 0.01.

Fig. 3. Spearman’s Rho correlation coefficients between tested soil properties and auxiliary variables.
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15

Fig. 4. Histograms of the residuals of soil properties calculated based on UK.
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Fig. 5. Histograms of the residuals of soil properties calculated based on RF.
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                           CaCO3                                     pHH2O                                    pHKCl                                      WC

Fig. 6. Variograms and best fitted models for the UK residuals.
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Fig. 7. Variograms and best fitted models for the RF residuals.
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Fig. 8. Predicted map of the soil properties and their corresponding upper and lower limit of the 90% prediction interval. The units of the maps is [%] for the all soil

properties except pHH2O and pHKCl and black points are sampling locations.
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Fig. 9. PICP plots of the soil properties predicted with UK.
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Fig. 10. PICP plots of the soil properties predicted with RFK.
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Fig. 11. Importance of covariates in RFK model (vertical axis: predictor variables and horizontal axis: partial importance 

score).
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